
Figure 2. The temporal relationship between local spatio-temporal

motion patterns is encoded in a distribution-based HMM at each

spatial location.

erage KL distance to the mean. Thus we capture the char-
acteristic motion of a scene by identifying the motion varia-
tions within each prototypical pattern, compactly represent-
ing the rich information stored in the local spatio-temporal
motion patterns.

Now that we have a characteristic representation of the
motion within a scene, we may potentially model an ex-
tremely crowded scene given a training video sequence of
usual activity, and detect unusual activities in a query video
by identifying local spatio-temporal motion patterns with
low likelihoods. Given a local spatio-temporal motion pat-
tern On

t , we can evaluate the probability of it belonging to
a specific prototypical observation using the KL distance to
remove the bias. Thus the probability of an observation On

t

given prototype s is

p (On
t |s) = p

(

d (On
t , Ps)

σs

)

∼ N (0, 1) , (4)

where d is the KL distance measure.
Since motion patterns that occur regularly in one spatial

location of the video may be unusual in another, observa-
tions are only evaluated for prototypical distributions that
occurred in the same spatial location n, or tube, in the train-
ing video. We compute the confidence measure for each
cuboid as the maximum likelihood given the possible pro-
totypical distributions within a tube. We then identify un-
usual motion patterns by thresholding low confidence val-
ues. Since extremely crowded scenes may contain larger
variations in one location than another, we normalize the
measure by the minimum confidence value of the training
set in each spatial location n.

4. Capturing Temporal Statistics in Distribu-
tion Based Hidden Markov Models

While the set of prototypes provides a picture of similar
activities in the scene, it does not capture the relationship
between their occurrences. As a result, we cannot assume
that the approach in the previous section will lead to robust
detection of unusual activities. We will now consider mod-
eling and leveraging the temporal dynamics of the motion

Figure 3. We capture the spatial relationships between local spatio-

temporal motion patterns in a coupled HMM that encompasses

spatially local tubes.

patterns. Since the scene is comprised of physically moving
objects we assume that cuboids in the same spatial location
exhibit the Markov property in the temporal domain. In or-
der to achieve a localized model, we observe each spatial
location separately, creating a single HMM for each tube of
observations as shown in Fig. 2.

Ordinary HMMs are defined by five parameters M =
{H,o,b,A,π}, where H is the number of hidden states, o
the possible values of observations, b a set of H emission
probability density functions, π an initial probability vector,
and A a transition probability matrix. We model a single
HMM Mn = {Hn,On,bn,An,πn} for each spatial lo-
cation n = 1, . . . , N . The set of possible observations On

is a continuous range of 3D Gaussian distributions. Com-
plex observations for HMMs are often quantized, however
this would significantly reduce the rich motion information
in each cuboid. We associate the hidden states Hn with
the prototypes Sn in the tube n, and use Eq. 4 to evaluate
the emission probabilities. Note that, while a single HMM
is created for each tube, the emission probability density
functions are created using samples from the entire video
volume. This construction permits the observations to re-
main continuous 3D Gaussian distributions, thus capturing
the temporal relationships between motion patterns while
maintaining their dense motion pattern representation. We
do not re-train the emission densities for the HMM, as the
prototypes already provide a good approximation and re-
estimation is computationally costly. The parameters An

and π
n are estimated by expectation maximization.

The likelihood of an observation sequence given an
HMM is traditionally evaluated by the forwards-backwards
algorithm [20]. However, we would like to evaluate each
individual cuboid. Primarily, we are interested in using
temporal statistics to indicate unlikely transitions between
cuboids. Thus we evaluate a specific cuboid using the pre-
dictive likelihood and a single motion pattern following it.
Our temporal confidence measure ρn

t for observation On
t is

ρn
t = log

 

X

st∈Sn

p (st+1|st) p (st|Ot)

!

+

log (p (On
t |O

n
1 , . . . , On

t−1)) , (5)
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